

Mathematics at Twydall Primary

We have produced this booklet to allow parents to better understand how maths calculations are delivered at Twydall Primary School.

Our aim is to develop mathematicians who are engaged, inspired and confident. To achieve this, a strong and assured grasp of the four number operations (addition, subtraction, multiplication and division) is important for both written methods as well as mental calculations.

This booklet contains the stages in teaching for each mathematical operation. In any given class or year group children will be working at different stages and will only move on when it is appropriate for them.

Essential Ideas

Children should

- Estimate calculations
- Consider whether to calculate mentally or using a written method
- Check answers: Is it reasonable? Can I do the inverse?
- Use equipment when it is helpful: counters, bead string, place value cards
- Be fluent in knowing times tables facts : children should aim to know:
$\checkmark \times 2, \times 5$ and $\times 10$ and related division facts by the end of year 2;
$\checkmark \times 3, \times 4$ and $\times 6$ and related division facts by the end of year 3;
\checkmark all tables including $\times 7, \times 8, x 9$ by the end of year 4

Stage 1

Practical activities and discussions e.g. Using two objects, how can I make a given total?

Finding one more than a number from 1 to 10
Using vocabulary associated with addition questions should be real life and related to children's experiences

Children are encouraged to develop a mental picture of the number system in their heads to use for calculation.
They develop
ways of recording calculations using pictures, etc.

Bead strings or bead bars can be used to illustrate addition

They use numberlines and practical resources to support calculation and teachers demonstrate the use of the numberline.

Number lines (blank) with teacher support

$$
7+4=11
$$

Children go up in 1 s

$\pm=$ signs and missing numbers

$3+4=\square$	$\square=3+4$
$3+\square=7$	$7=\square+4$
$\square+4=7$	$7=3+\square$
$\square+\nabla=7$	$7=\square+\nabla$

Show that $3+4$ is the same as 7 using 2 separate bead strings.

Stage 2

$\pm=$ signs and missing numbers

Extend to
$14+5=10+\square$
Opportunities to explore place value
and adding three numbers
$32+\square+\square=100 \quad 35=1+\square+5$

Partition into tens and ones and recombine

$12+23=10+2+20+3$
$=30+5$
$=35$
refine to partitioning the second number only:
$23+12=23+10+1+1$
$=33+1+1$
$=35$

This can also be represented using more than 1 bead string (23 on one and 12 on the other) so that the colours can be used to identify tens and ones.

Bead strings or bead bars can be used to illustrate addition including bridging through ten by counting on 2 then counting on 3 .

Children then begin to use numbered lines to support their own calculations using a numbered line to count on in ones. More confident learners can begin to use an empty.

Mental Method:

Add 9 or 11 by adding 10 and adjusting by 1
$35+9=44$

Stage 3

+= signs and missing numbers

Partition into tens and ones and recombine

Partition both numbers and recombine. Refine to partitioning the second number only e.g.
$36+53=53+30+6$

$$
=83+6
$$

$$
=89
$$

53

Add a near multiple of 10 to a two-digit number

Partition into hundreds, tens and ones and recombine

With larger numbers children can use their individual reasoning when partitioning

Either partition both numbers and recombine or partition the second number only e.g.

$$
\begin{aligned}
358+73 & =358+70+3 \\
& =428+3 \\
& =431
\end{aligned}
$$

Stage 4
Children must be confident within their understanding of the value of each digit.

They need to add the ones first. Therefore they will know how many tens they might have, from adding the ones. They can then add this to the total from the tens column.

Record steps in addition using partitioning:
Partitioned numbers are then written under one another:

Add the ones first as this will help the children with later calculations as they move through the progression.

Using more formal columns (pairs of 2 digit numbers)

$47+76=123$
Write the larger number written on top
Add the ones first
76
+47
+43
110
123
NB vocab: use $70+40$, not $7+4$
358
+73
+11
120
300
431

Stage 5

Pencil and paper procedures

Leading to formal method, showing numbers carried underneath
358
$\begin{array}{r}+\quad 73 \\ \hline 431\end{array}$
$\frac{431}{11}$
Extend to numbers with at least four digits
$3587+675=4262$
3587
$+675$
4262

Extend to decimals (same number of decimals places) and adding several numbers (with different numbers of digits). Model negative numbers using a number line.

Stage 6

Pencil and paper procedures

Extend to numbers with any number of digits and decimals with 1 and 2 decimal places. $124.9+117.25=242.15$
124.90
$+117.25$
$\frac{242.15}{11}$
add in a zero to keep the place value digits of similar value are in line.

Subtraction

Stage 2

Stage 1

Children are encouraged to develop a mental picture of the number system in their heads to use for calculation.

They develop ways of recording calculations using pictures etc.

Bead strings or bead bars can be used to illustrate subtraction including bridging through ten by counting back 3 then counting back 2.

They use numberlines and practical resources to support calculation. Teachers demonstrate the use of the numberline to develop visual links with a bead string.

\section*{$-=$ signs and missing numbers
 | $7-3=\square$ | $\square=7-3$ |
| :--- | :--- |
| $7-\square=4$ | $4=\square-3$ |
| $\square-3=4$ | $4=7-\square$ |
| $\square-\nabla=4$ | $4=\square-\nabla$ |}

Visual / practical activities
 \section*{Number lines}

The difference between 7 and 11
(Counting on)
To reinforce concept. Practical strategies essential to see 'difference'.

Recording by - drawing jumps on prepared lines - constructing own lines, if appropriate
(Teachers model jottings appropriate for larger numbers)

Bead strings can be used to illustrate subtraction including bridging through ten by counting back 3 then counting back 2 .

$0000000-00000-$

13-5=8
Children then begin to use numbered lines to support their own calculations - using a numbered line to count back in ones.

$-=$ signs and missing numbers

Continue using a range of equations with appropriate numbers.

$$
\text { Extend to } 14+5=20-\square
$$

Find a small difference by counting on $\quad 42-39=3$

Mental Method

Subtract 9 or 11. Begin to add/subtract 19 or 21 eg. $\mathbf{3 5 - 9} \mathbf{- 2 6}$

Use known number facts and place value to subtract

 (partition second number only)$37-12=37-10-2$

$$
=27-2
$$

$=25$

-1 -1
-10

Stage 3

Find a small difference by counting on
Use of larger numbers (hundreds) e.g. 102-97=5

Use known number facts and place value to

 subtracte.g. 3 digit number -2 digit number

Estimate first....
$200-20=180$
$197-15=182$

197
-5

- 10

Pencil and paper procedures

Complementary addition and mental instant recall facts eg. number bonds, adding tens
$84-56=28$

Use of bead strings to model groups of.
(Recording on a number line modelled by the teacher when solving problems)

Modelling to begin to show the link between multiplication and repeated addition.
Emphasise use of vocabulary to develop this.

Repeated addition

$\mathbf{3}$ times $\mathbf{5}$ is $\mathbf{5 + 5 + 5 = 1 5}$ or $\mathbf{3}$
lots of 5 then introduce multiplication sign 5×3

Repeated addition can be modelled on a number line:

$5 \times 3=5+5+5$

Children can use a bead string independently:
$5 \times 3=5+5+5$

Multiplication

Stage 2

Use of a bead string to investigate

$x=$ signs and missing numbers	
$7 \times 2=\square$	$\square=2 \times 7$
$7 \times \square=14$	$14=\square \times 7$
$\square \times 2=14$	$14=2 \times \square$
$\square \times \nabla=14$	$14=\square \times \nabla$

Arrays and repeated addition

$\bullet \bullet \bullet \bullet 4 \times 2$ or $4+4$

$$
2 \times 4
$$

or repeated addition
$2+2+2+2$

$\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

Commutativity

Children should know that 3×5 has the same answer as 5×3. This can also be shown on the number line.

Stage 3

Doubling multiples of 5 up to 50
$15 \times 2=30$
Partition
$(10 \times 2)+(5 \times 2)$

$$
20+10=30
$$

$x=$ signs and missing numbers

 Continue using a wider range of equations. Number lines6×3

$35 \times 2=70$

Partition

$=70$

Division		
Stage 1	Stage 2	Stage 3
Pictures / marks 12 children get into teams of 4 to play a game. How many teams are there?	Understand division as sharing and grouping Sharing - 6 sweets are shared between 2 people. How many do they have each? $6 \div 2$ can be modelled as: Grouping or repeated subtraction There are 6 sweets, how many people can have 2 sweets each?	\doteqdot = signs and missing numbers Continue using a range of equations as in Level 2 but with appropriate numbers. Understand division as sharing and grouping $18 \div 3$ can be modelled as: Sharing - 18 shared between 3 (see Level 2 diagram) Grouping - How many 3's make 18 ?
Children will understand equal groups and share items out in play and problem solving. They will count in 2 s and 10 s and later in 5 s .	$00 / 00 / 00$ Repeated subtraction using a number line or bead string $12 \div 3=4$	0 3 6 9 12 15 18 Remainders Sharing - 16 shared between 3, how many left over? Grouping - How many 3's make 16, how many left over? e.g. $16 \div 3=$
	This will help interpret the statement how many 3s make 12' Using symbols Using symbols to stand for unknown numbers to complete equations using inverse operations \square $\div 2=4$ $20 \div \Delta=4$ $\div \triangle=4$	$16 \div 3=5 r 1$

